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11. Generalized Exchange and Laws of Conservation

We will consider kinematic exchange between a system and the environment on the Z-level of
rest-motion (Fig. 2.15).

dZ S - —>er
—_— A —
dz

C

Fig. 2.15. A graph of Z-level exchange.

Let motion-rest dZ be transferred from the environment to the system and the amount dZ, of
motion-rest be transferred from the system to the environment along the kinetic channel and dZ,

be transferred by the system over the potential. If Z=P , then
dZ,=dP,, dZ =-rdy, Z,=-kdd, (2.262)
where P is a parameter of any level of motion,  is kinetic resistance or kinetic elasticity, & is potential

resistance or potential elasticity, dy and dd are differentials of particular states.

In a general case, the resistances of the exchange channels depend on the state of the system,
environment, and the character of the exchange channels; in the linear approximation they are constant.
Their inverse values, g and C, will be called kinetic and potential conductivities, respectively.

Each of the differentials of exchange over a direct and two inverse channels determines the amount
of mutual exchange equal to the difference of partial components of exchange. The rest-motion mdo
gained by the system is equal to the sum of exchanges in the three channels. Thus, we have

mdd = dP + (—rdyi) + (—kd D). (2.263)

Hence, we arrive at the equation of exchange in the form:

mdd rdy  kd® dP
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et —y=F. (2.264b)

The equation of exchange is simultaneously the equation of the state of the system.

We will write the exchange-state equations for S - P - F-and D-levels:
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In a broad sense, the first terms in the left-hand sides of the equations are kinetic momenta, the second
and third terms are kinetic and potential momenta of the feedback with the environment.

If we introduce the generalized charge
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where a is the characteristic length, then in terms of charges the equation for the P -level becomes:

A

0,=0,+0.+0,. (2.270)

For the F -level it will be represented by the equation of current:
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Finally, on the D -level the equation takes the form:

dl. di, dldi
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(2.272)
dt dt dt dt
If the system is closed over the channel ZADS (DAS =0), it is closed over all overlying channels and
in a general case, it is not closed over all underlying channels
Energy description of the levels S, P, F and D is expressed by
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If the system is closed over the kinetic channel, i.e. » = 0, then energies
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(2.276)

(2.277)

(2.278)

are conserved. If the system is open, motion-rest is also conserved but within the common bounds of

the system and environment.



