11. Generalized Exchange and Laws of Conservation

We will consider kinematic exchange between a system and the environment on the Z-level of rest-motion (Fig. 2.15).

Fig. 2.15. A graph of Z-level exchange.
Let motion-rest $d \hat{Z}_{s}$ be transferred from the environment to the system and the amount $d \hat{Z}_{r}$ of motion-rest be transferred from the system to the environment along the kinetic channel and $d \hat{Z}_{c}$ be transferred by the system over the potential. If $\hat{Z}=\hat{P}$, then

$$
\begin{equation*}
d \hat{Z}_{s}=d \hat{P}_{s}, \quad d \hat{Z}_{r}=-r d \hat{\psi}, \quad \hat{Z}_{r}=-k d \hat{\Phi}, \tag{2.262}
\end{equation*}
$$

where \hat{P} is a parameter of any level of motion, r is kinetic resistance or kinetic elasticity, k is potential resistance or potential elasticity, $d \hat{\psi}$ and $d \hat{\Phi}$ are differentials of particular states.

In a general case, the resistances of the exchange channels depend on the state of the system, environment, and the character of the exchange channels; in the linear approximation they are constant. Their inverse values, g and C, will be called kinetic and potential conductivities, respectively.

Each of the differentials of exchange over a direct and two inverse channels determines the amount of mutual exchange equal to the difference of partial components of exchange. The rest-motion $m d \hat{v}$ gained by the system is equal to the sum of exchanges in the three channels. Thus, we have

$$
\begin{equation*}
m d \ddot{v}=d P_{s}+(-r d \dot{\psi})+(-k d \Phi) \tag{2.263}
\end{equation*}
$$

Hence, we arrive at the equation of exchange in the form:

$$
\begin{equation*}
\frac{m d \hat{v}}{d t}+\frac{r d \hat{\psi}}{d t}+\frac{k d \hat{\Phi}}{d t}=\frac{d \hat{P}_{s}}{d t} \tag{2.264}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{m d \hat{v}}{d t}+r \hat{v}+\frac{1}{C} \hat{\psi}=\hat{F}_{s} \tag{2.264a}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{m d^{2} \hat{\psi}}{d t^{2}}+r \frac{d \hat{\psi}}{d t}+\frac{1}{C} \hat{\psi}=\hat{F}_{s} . \tag{2.264b}
\end{equation*}
$$

The equation of exchange is simultaneously the equation of the state of the system.
We will write the exchange-state equations for \hat{S}-, \hat{P}-, \hat{F} - and \hat{D} - levels:

$$
\begin{gather*}
\frac{m d^{2} \hat{O}}{d t^{2}}+r \frac{d \hat{O}}{d t}+\frac{1}{C} \hat{O}=\hat{S}_{s}, \quad \frac{m d^{2} \hat{\Phi}}{d t^{2}}+r \frac{d \hat{\Phi}}{d t}+\frac{1}{C} \hat{\Phi}=\hat{P}_{s} \tag{2.265}\\
\frac{m d^{2} \hat{\psi}}{d t^{2}}+r \frac{d \hat{\psi}}{d t}+\frac{1}{C} \hat{\psi}=\hat{F}_{s}, \quad \frac{m d^{2} \hat{v}}{d t^{2}}+r \frac{d \hat{v}}{d t}+\frac{1}{C} \hat{v}=\hat{D}_{s} \tag{2.266}
\end{gather*}
$$

or

$$
\begin{array}{ll}
m \hat{\psi}+r \hat{\Phi}+\frac{1}{C} \hat{O}=\hat{S}_{s}, & m \hat{v}+r \hat{\psi}+\frac{1}{C} \hat{\Phi}=\hat{P}_{s} \\
m \hat{w}+r \hat{v}+\frac{1}{C} \hat{w}=\hat{F}_{s}, & m \hat{z}+r \hat{w}+\frac{1}{C} \hat{v}=\hat{D}_{s} \tag{2.268}
\end{array}
$$

In a broad sense, the first terms in the left-hand sides of the equations are kinetic momenta, the second and third terms are kinetic and potential momenta of the feedback with the environment.

If we introduce the generalized charge

$$
\begin{equation*}
\hat{Q}_{m}=\frac{m \hat{v}}{a}, \quad \hat{Q}_{r}=\frac{r \hat{\psi}}{a}, \quad \hat{Q}_{c}=\frac{1}{C a} \hat{\Phi}, \tag{2.269}
\end{equation*}
$$

where a is the characteristic length, then in terms of charges the equation for the \hat{P}-level becomes:

$$
\begin{equation*}
\hat{Q}_{s}=\hat{Q}_{m}+\hat{Q}_{r}+\hat{Q}_{c} \tag{2.270}
\end{equation*}
$$

For the \hat{F}-level it will be represented by the equation of current:

$$
\begin{equation*}
\hat{I}_{s}=\hat{I}_{m}+\hat{I}_{r}+\hat{I}_{c} . \tag{2.271}
\end{equation*}
$$

Finally, on the \hat{D}-level the equation takes the form:

$$
\begin{equation*}
\frac{d \hat{I}_{s}}{d t}=\frac{d \hat{I}_{m}}{d t}+\frac{d \hat{I}_{r}}{d t}+\frac{d \hat{I}_{c}}{d t} . \tag{2.272}
\end{equation*}
$$

If the system is closed over the channel $\hat{D}_{s}\left(\hat{D}_{s}=0\right)$, it is closed over all overlying channels and in a general case, it is not closed over all underlying channels

Energy description of the levels $\hat{S}, \hat{P}, \hat{F}$ and \hat{D} is expressed by

$$
\begin{align*}
& \hat{E}_{s}=\int \hat{S}_{s} d \hat{O}=\frac{m \hat{\Phi}^{2}}{2}+\int r \hat{\psi} d \hat{O}+\frac{\hat{O}^{2}}{2 C} \tag{2.273}\\
& \hat{E}_{p}=\int \hat{P}_{s} d \hat{\Phi}=\frac{m \hat{\psi}^{2}}{2}+\int r \hat{\psi} d \hat{\Phi}+\frac{\hat{\Phi}^{2}}{2 C} \tag{2.274}\\
& \hat{E}_{f}=\int \hat{F}_{s} d \hat{\psi}=\frac{m \hat{v}^{2}}{2}+\int r \hat{v} d \hat{\psi}+\frac{\hat{\psi}^{2}}{2 C} \tag{2.275}
\end{align*}
$$

$$
\begin{equation*}
\hat{E}_{d}=\int \hat{D}_{s} d \hat{v}=\frac{m \hat{w}^{2}}{2}+\int r \hat{w} d \hat{v}+\frac{\hat{v}^{2}}{2 C} . \tag{2.276}
\end{equation*}
$$

If the system is closed over the kinetic channel, i.e. $r=0$, then energies

$$
\begin{array}{ll}
\hat{E}_{s}=\frac{m \hat{\Phi}^{2}}{2}+\frac{\hat{O}^{2}}{2 C}, & \hat{E}_{p}=\frac{m \hat{\psi}^{2}}{2}+\frac{\hat{\Phi}^{2}}{2 C}, \\
\hat{E}_{f}=\frac{m \hat{v}^{2}}{2}+\frac{\hat{\psi}^{2}}{2 C}, & \hat{E}_{d}=\frac{m \hat{w}^{2}}{2}+\frac{\hat{v}^{2}}{2 C}, \tag{2.278}
\end{array}
$$

are conserved. If the system is open, motion-rest is also conserved but within the common bounds of the system and environment.

