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10.   Kinematic-Dynamic Exchange of a system with environment

10.1. P -level exchange
We will consider dynamic-kinematic exchange of a system with the environment on the P-level

represented in Fig. 2.13 by a graph of exchange.

Fig. 2.13. A graph of P -level exchange.

Kinematic variation in the momentum of the system is

ˆ ˆ ˆ
sm msdP dP dPυ = − , (2.236)

where dPsm  is the partial kinematic momentum transferred from the environment, dPms  is the partial
kinematic momentum transferred by the system to the environment. 

Dynamic variation of the momentum is 

ˆ ˆ ˆ ˆ( )m s s mdP dm dmυ υ υ= − + ∆ , (2.237)

where dms sυ  is partial dynamic momentum transferred from the environment, ˆ ˆ( )mdm υ υ+ ∆  is
partial dynamic momentum transferred by the system to the environment; υ υ+ ∆  is the velocity of
mass mdm ; υ  is the velocity of the system; ∆υ  is a discrete jump of the velocity. 

The resultant transfer is 

ˆ ˆˆ( ) md m dP dPυυ = + , (2.238)
and

ˆ( ) ˆ ˆ ˆ ˆ( )s s m
d m F q q

dt υ
υ

υ υ υ= + + + ∆ , (2.239)

where 
ˆˆ dPF

dt
υ

υ =  is the kinematic kinema, q
dm

dts
s=  and m

m
dmq
dt

= −   are dynamic mass charges.

Since the total rate of change of momentum is

M
dP  sm

dP ms

dm  s   s

dm m (υ+∆υ)

 υ

-
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ˆ ˆ( ) ˆd m dq m

dt dt
υ υ

υ= + ,    где s mq q q= + , (2.240)

expression (2.239) can be written as

ˆ ˆ ˆ ˆs s m
dm F q q
dt υ
υ

υ υ= + ∆ + ∆ (2.241)

or
ˆ ˆ ˆs s m

dm F q q l t
dt υ
υ

υ δ= + ∆ + ∆ , (2.241a)

where  ∆υ υ υs s= −  и ˆ l tυ δ∆ = ∆  is a discrete derivative, describing the jump of the velocity,
In steady-state dynamic exchange, we have

q q qm s= − = ,  ˆ 0υ∆ = , (2.242)

ˆ ˆ ˆdm F qE
dt υ
υ

= + , (2.243)

where ˆ ˆ ˆsE υ υ= −  is an effective velocity which we will call  the vector of field strength of rest-motion
in dynamic exchange.

When dynamic exchange prevail, we have

m
d
dt

qE
υ

= . (2.244)

This formula is, however, valid for kinematic exchange as well, if q is meant as a kinematic charge
modulus.

10.2.   Field Strengths of Rest-Motion

The effective potential E p  and kinetic E k  field velocities strengths of circular motion will be
determined from formulas (2.184)-(2.186) and (2.244): 

2 2( ) ( 2 )p
m r
q

η β ω ε βω = + − + + E n τ , (2.245)

2 2( 2 ) ( )k
m r r i
q

ε βω η β ω = − − + + − E n τ . (2.246)

The axial field strength has the form

[ ]E k0
2 2 2= − − + + +

m
q

ir( ) ( )η β ω ε βω . (2.247)

The potential field strength describes the Yes-subfield, the kinetic field strength, the No-subfield; and the
axial field strength describes the Yes-No subfield of the circular motion-rest field. 
If motion is uniform,

E np
m
q

a= − ω 2 , (2.248)
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2
k

m ai
q

ω= −E τ , (2.249)

E ko
m
q

a= − ω 2 . (2.250)

The total energy of the fields of all three levels of rest-motion of the system with mass m is:

E
mE mE mE mEp k o o= + + =

2 2 2 2

2 2 2 2
. (2.251)

The energy structure of this motion-rest field is shown in Fig. 2.14.

Fig. 2.14.A graqph of energies

Motion of a material point with the charge q in the field of circular rest-motion,characterized
by vectors  E p , E k  and E 0,  can be expressed in the form:

2

p
mq

a
υ

=E n ,    
2

k
m iq

a
υ

= −E τ ,   
2

o
m iq

a
υ

= −E k . (2.252)

Such structure is valid for any level of motion-rest because the ratio of charge to mass of a moving object
(motator) defines an effective field frequency

c
q
m

ω = , (2.253)

Its fundamental wavelength will be

λ π= 2
mc

q
, (2.254)

where c is the wave velocity of the field.

We will supplement these equations by simple relations between the oscillation amplitude a,
oscillation velocity υ, wavelength λ, and the wave velocity c:

2 a
c
υ

π λ=      или   a
c
υ

= , (2.255)

where

=
λ
π2

(2.256)

is a wave radius.
The similar correlation between the local E and wave A velocities-strengths of the motion-rest

field
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E
c

A=
υ

(2.257)

follows from the last relations.

The same relation also holds between the local and wave moments of charge: 

P
c

Pa v=
υ

, (2.258)

where aP qa= is a local moment and vP q=  is a wave moment.

It is evident that the relation between the local moment of charge and the wave moment of
momentum has the form

ˆ
ˆ
a m

v

P q
mcL

= . (2.259)

On the basis of formula (2.257), all three vector equations of motion in (2.252) can be expressed by a
general equation

2mqA
c a
υ υ

= . (2.260)

Since  aυ ω=  and cq mω= , then

c
c
A

ω ω=      or    c
A
c

ω ω= . (2.261)

One can see from the above equation that when the field strength A approaches the wave velocity c, the
specific velocity ω tends to the limiting fundamental frequency ωc of the field.


